Aufgabe 2 Unentscheidbarkeit

a) Zu Zeigen: Das 42-Halteproblem ist unenentscheidbar.

Beweis: Wir zeigen $H \leq H_{42}$.

Hierzu müssen wir eine totale, berechenbare Funktion $f: \{0, 1, \#\}^* \longrightarrow \{0, 1\}^*$ angeben, so dass gilt: $x \in H \iff f(x) \in H_{42}$

Zu gegebener TM M und Wort x kann man eine TM M'_x konstruieren, die so arbeitet:

- Falls M'_x nicht mit Bin(42) auf dem Band gestartet wird, macht M'_x irgendwas beliebiges.
- Falls M'_x auf mit Bin(42) auf dem Band startet, wird das Band gelöscht und x aufs Band geschrieben.
- Dann läuft M_x^\prime zurück zum Anfang.
- Danach verhält sich M'_x wie M.

Diese Konstruktion M'_x ist total und berechenbar.

Wir wählen also $f(w\#x) := Kodierungvon(M_w)_x'$

Dann gilt:

```
w\#x \in H

\Leftrightarrow M_w angesetzt auf x hält

\Leftrightarrow (M_w)'_x angesetzt auf Bin(42) hält

\Leftrightarrow f(w\#x) \in H_{42}
```

q.e.d.

b) $\overline{H_{42}}$ ist nicht entscheidbar.

Beweis durch Widerspruch:

Sei $\overline{H_{42}}$ entscheidbar, so folgt nach dem Korrolar Script Vorlesung 20, Folie 15, dass H_{42} entscheidbar ist. Dies ist ein Widerspruch zur unentscheidbar von H_{42} Die Sprache $\overline{H_{42}}$ muss also unentscheidbar sein.

c) $\overline{H_{42}}$ ist nicht semi-entscheidbar.

Beweis:

Für H_{42} lässt sich eine TM M' konstruieren, welche diese semi-entscheidet. M' simuliere die TM M_w . Hält M_w an, so akzeptiert M' das Wort, hält M_w nicht an, so hält M' ebenfalls nicht an. Es folgt H_{42} ist semi-entscheidbar.

Nach Satz Schöning, Seite 123 folgt falls $\overline{H_{42}}$ semi-entscheidbar ist, dass H_{42} entscheibar ist. Da dies ein Widerspruch zu unentscheidbarkeit von H_{42} ist folgt $\overline{H_{42}}$ kann nicht semi-entscheidbar sein.

${\bf Aufgabe~3~\it Abschlusseigenschaften}$

- a) Wenn A und B entscheidbar sind, so gibt es jeweils eine TM, welchen χ_a berechnet. Man kann eine TM konstruieren welche diese beiden TMs simuliert und genau dann 1 zurück gibt, wenn eine von beiden 1 als Ausgabe hat und sonst 0. Diese TM berechent genau χ_a für $A \cup B$. Da beide TMs χ_a in endlich vielen Schritten berechnen können, terminiert auch die neue TM nach endlich vielen Schritten.
- b) Wenn A und B entscheidbar sind, so gibt es jeweils eine TM, welchen χ_a berechnet. Man kann eine TM konstruieren welche diese beiden TMs simuliert und genau dann 1 zurück gibt, wenn die TM zu A 1 als Ausgabe hat und die TM zu B 0 als Ausgabe hat. Sonst soll die TM 0 ausgeben. Diese TM berechent genau χ_a für $A \setminus B$. Da beide TMs χ_a in endlich vielen Schritten berechnen können, terminiert auch die neue TM nach endlich vielen Schritten.
- c) Sei $A = \Sigma^*$, dann ist A entscheidbar, da jedes Wort in A liegt.

Sei B eine nicht entscheidbare Semi-entscheidbare Sprache.

Mit $A = \Sigma^*$ folgt $A \setminus B = \Sigma^* \setminus B = \overline{B}$. Ist \overline{B} nun semi-entscheidbar so folgt mit Satz Schöning, Seite 123, dass B entscheidbar ist. Dies ist ein Widerspruch zur Annahme. Die Aussage $A \setminus B$ sei semi-entscheidbar kann also hier nicht gelten.

 $A \setminus B$ ist im Allgemeinen nicht semi-entscheidbar.

d) Wie auf dem Übungszettel 4 Aufgabe 4a gezeigt, ist jede endliche Sprache regulär. A muss also eine reguläre Sprache sein. Nach VL 9 Folie 17 ist das Wortproblem für reguläre Sprachen entscheidbar.

e) Es gilt $\Sigma^* \backslash A = \overline{A}$. Somit folgt \overline{A} ist endlich. Mit d
 folgt \overline{A} ist entscheidbar. Nach Satz Schöning, Seite 123, gilt dann auch A ist entscheidbar.